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Abstract

Correlation between heat transfer and pressure drop in channels with periodically grooved parts along the
streamwise direction is investigated for various channel configurations by assuming two-dimensional and periodically
fully developed flow and temperature fields. Streamwise periodic variations of the cross-section induce the bifurcation
from steady-state flow to oscillatory one. Heat transfer is enhanced significantly after the bifurcation with the increase
of pressure drop. An efficiency defined as the ratio of the heat transfer enhancement to the increase of pressure drop is
considered. It is found that the channels with expanded grooves perform efficiently, while the channels with contracted
grooves inefficiently. © 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

Several techniques have been developed to augment
single phase convective heat transfer in channels and to
reduce the size and weight of heat exchangers. A com-
monly used technique for improving the performance of
heat exchange devices is to set up periodic disturbance
promoters along the streamwise direction. Such an ar-
rangement of the channels might lead to the enhance-
ment of the heat transfer due to flow mixing and
periodic interruptions of thermal boundary layers, but
often causes increase of pressure drop penalty [1].

The channels which have streamwise periodic cross-
sections can be divided into identical modules in the
streamwise direction where the fully developed flow and
temperature fields repeat periodically after a certain
entrance region. This assumption enables us to confine
the calculation domain to cover only one of these
modules without dealing with the entrance region. Such
a procedure was first suggested by Patankar et al. [2] and
was applied to a configuration consisting of successive
ranks of isothermal plate segments placed transverse to
the main flow direction under steady-state condition.

* Corresponding author.

There are numerous investigations using the periodic
and fully developed concepts on fluid flow and heat
transfer for the parallel plate channels with periodically
grooved parts. Ghadder et al. [3], Sunden and Troll-
heden [4] and Pereira and Sousa [5] investigated the flow
in channels with rectangular grooves on one plate. They
showed complex flow patterns such as separation, re-
circulation, re-attachment and deflection. Especially,
Ghadder et al. found the presence of self-sustained os-
cillatory flow. In addition, Ghadder et al. [6] showed
that the resonant oscillation of the self-sustained flow
results in doubling the heat transfer. Moreover, Farha-
nieh [7] investigated numerically heat transfer and fluid
flow for channels with trapezoidal grooved parts for
laminar steady-state flow. Greiner et al. [8] and Wirtz
et al. [9] reported the measured pressure drop and heat
transfer performance of the channels having a series of
V-grooves formed on both walls or only one wall.

In this work, the fluid flow and heat transfer in
channels with contracted and expanded grooves set up
both symmetrically and asymmetrically with the cen-
terline of the parallel plates are investigated as a simple
model of plate-type heat exchangers. The flow and
temperature fields are assumed to be two-dimensional
and periodically fully developed. The temperature on the
channel walls is kept constant. Correlations between
heat transfer and pressure drop are reported to reveal
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Nomenclature

ay fupper height of contracted or expanded
groove from the centerline

a lower height of contracted or expanded

groove from the centerline
Dy hydraulic diameter 4/4*
h half height of the parallel plane channel
L period of the module
l length of contracted or expanded groove
Nu local Nusselt number
Nu,, mean Nusselt number

n distance normal to the wall

Pe Peclet number

Pr Prandtl number

p pressure

Re Reynolds number

s distance along the grooved channel wall
from the inlet

T nondimensional temperature

T period of oscillation

Ty local bulk temperature

T; temperature at inlet

Ty wall temperature

U  mean velocity at the cross-section
with height 2A*

U~ representative velocity

u,v  velocity components in x- and y-directions,
respectively

u velocity vector

Greek symbols

o heat transfer coefficient

Ap pressure drop

€ relaxation factor

n efficiency between the heat transfer and
pressure drop

® normalized temperature as (7 — Ty,) /(T — Tw)

K* thermal diffusivity

i thermal conductivity

v kinematic viscosity

p* density

W nondimensional stream function

w nondimensional vorticity

Subscripts

c critical

p parallel plate channel

* dimensional value

numerically the efficient channel configurations with
periodically grooved parts.

2. Governing equations

We consider a two-dimensional channel shown in
Fig. 1. The channel consists of parallel plates of height 24*
with periodically contracted or expanded grooves.
Fig. 1(f) is one of the periodic modules with periodicity
length L*. Fluid enters from an inlet far upstream and
flows through the entrance region, and arrives at the
module.

The x-axis is taken in the flow direction along the
centerline of the parallel plate channel and the y-axis is
perpendicular to it with the origin O in Fig. 1(f). The
flow is assumed to be two-dimensional and incom-
pressible. We make the following physical quantities
nondimensional by taking half height of the plates #*,
velocity U* = 3/2 U (U is mean velocity at the cross-
section with height 24*), temperature on the plates T
and one for the fluid at the inlet of the channel 7" as
representative quantities, that is,

x* y* FrU* w*h*
x:%7 y:h_*a [:7’ w = U’
w_U*h*7 _]-;*_Tvt7

where we represent physical quantities with their di-
mensions by attaching a superscript * to them. Then, the
governing equations for vorticity (x,y,t), stream
function Y(x,y,¢) and temperature T(x,y,t) are written
in nondimensional form as

d 1
() = - Vo, @
o= -V, (3)
or I

EJFJ(TH//):PF—ReVzT? 4)

where the operator J(f,g) = 0f /ox0g/dy — O0g/0x0f /dy.
The Reynolds number and Prandtl number are defined
as Re = U*h"/v* and Pr=v*/k*, where v*,k* are the
kinematic viscosity and thermal diffusivity of the fluid,
respectively.

Moreover, as parameters to determine the configu-
ration of the channel, period of the channel L, length of
the contracted or expanded grooves /, and heights of the
grooves from the centerline of the parallel plates ay,a
are defined as
L=L"/k", 1=I/h", a,=d/h*, a=da/h, (5)
where the channel consists of parallel plates for
a, =a; =1, whereas it has expanded grooves if
ay,a; > 1 and contracted grooves if a,,a < 1.
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Fig. 1. Geometries and co-ordinates. (a) Asymmetric channel
with expanded and contracted grooves in both plates (a, = 0).
(b) Asymmetric channel with expanded and contracted grooves
in both plates (a, =0.5). (c) Asymmetric channel with ex-
panded grooves in one plate (a, = 1). (d) Symmetric channel
with expanded grooves in both plates (a, = 2). (¢) Asymmetric
channel with expanded grooves (a, = 3). (f) One of the mod-
ules.

A pressure field is obtained by solving the Navier—
Stokes equation as

— 1 2
Vp————(u-V)u—kEVu, (6)

where the velocity u = (u, v) is expressed in terms of the
stream function  as u = 0y /0y and v = —0y/0x.

We assume that the velocity is zero and the tem-
perature is kept to be constant on the plates. We adopt
in this study the case that flow rate is fixed in time, but
pressure difference between the inlet and outlet of the
channel fluctuates. Then, the imposed flow rate 2U; A*
is constant and its nondimensional value is 4/3 in this
case. The boundary conditions on the plates are written
as

_ _W _ W _

Y =0, u—a—y—O, v= ax—O7 T=0

on the lower plate, (7)
4 oy 2 B

b=z u=g, =0 v=—go=0 T=0

on the upper plate. (8)

The flow is expected to attain, after a short entrance
region, a periodic fully developed regime, in which the
velocity field repeats itself from module to module.
This expectation is validated by the results of Greiner
et al. [8] and Farhanieh et al. [12], where the flow be-
came periodic after only three to five modules in the
entrance region. So, the following periodic boundary
conditions are imposed at the inlet and outlet of the
module

W(x_"LvyJ):w(xvyvt)v (9)

o(x+L,y,t) = olx,yt). (10)

The fluid temperature in the fully developed periodic
flow with a constant wall temperature does not simply
repeat itself but the normalized temperature profile
which is defined by (7 — T7,,)/(T, — T,) repeats identi-
cally from module to module. Then, the inlet and outlet
boundaries have the following relations.

T()C-FL,y,l) _TW T(x7y7t)_Tw

Lc+L)-T,  LE) -1 (11)

where T;,(x) is the cross-sectional local bulk temperature
defined as

_ JluTdy
S luldy

The absolute value of the velocity u is used here so that
the regions with reverse flow are properly represented.
The integrals are to be carried over the cross-sectional
area of the channel. Kelkar and Patankar [10] and Wang
and Tao [11] described the computational details about
the periodic boundary conditions.

A reference value for the pressure p is taken as p = 0
at the centerline of the inlet of the module.

T (x) (12)

3. Numerical methods

We solve the governing equations numerically by the
time marching method for an appropriate initial con-
dition as w =y =0,7 =0.5. The vorticity transport
Eq. (2) and the energy Eq. (4) are approximated by the
explicit Adams-Bashforth method with the second-
order accuracy in time together with the second-order
accuracy of central finite difference in space, but
the convective term in Eq. (4) is approximated by the
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first-order upwind method. The Poisson equation (3) is
approximated by the second-order central difference and
solved by the successive over relaxation (SOR) method,
where the relaxation factor e is constant and ¢ = 1.5 is
used. The convergence of the SOR method is determined
when the maximum relative difference for the stream
function reaches 1073,

The steady state is determined when the velocity v and
the normalized temperature © = (T — T,,)/(T;, — Ty) at
(x,y) =(L/2+41/2,—-0.5) become independent of time
and the maximum relative difference of two successive
time steps reaches 108, In the case that the flow and
temperature fields are in time periodic oscillatory state, it
is judged as fully time periodic when the maximum rel-
ative difference for local maximum amplitudes of v and ©
between two oscillation cycles reaches 1074,

In all the calculations, equally spaced mesh system
with Ax=Ay=0.05 and the time increment
At =0.0001 are used. The grid fineness in space is
checked by calculating with different values of Ax and Ay
for L=8,l=4,a,=1,a=2, Re=400 and Pr=71.
The numerical solution of the trial calculation gives
v=0.0123 and @ =0.935 with Ax=Ay=0.05 and
v=0.0121 and © =0.933 with Ax=Ay=0.04. It
shows that relative error for v and @ is within only 2%
with the difference of grid sizes. The higher-order results
may be estimated by Richardson extrapolation method
according to these numerical values as v, = 0.0117 and

O = 0.928, where the accuracy is taken as 2 for v and
1.5 for @ because the convective term for energy equa-
tion is discretized by the first order upwind difference.
Then the estimated error may be as large as 8§%.

In addition, we compare our numerical results with
other numerical and analytical ones. We obtain the
frequency of v as 0.1415 for L =6.6,/=2.2,a, =1,
a; = 2.1 and Re = 525 from a reciprocal of oscillation
period which is given by a typical crest-to-crest distance.
It shows good agreement with 0.142 of Ghadder et al. [3]
for L =6.6666,1=2.2222a, =1, =2.1111 and
Re = 525 which was obtained by using the spectral ele-
ment method. Furthermore, the mean Nusselt number
which is defined in Section 4.2 is 7.52 for parallel plate
channel (a, =a =1,L=8) at Re=400 and Pr=17,
which shows within 0.3% relative error with the ana-
lytical value of 7.54 [13]. From the above numerical
check, it is confirmed that our numerical results are
valid.

4. Results
4.1. Flow and temperature fields
Numerical simulations are carried out for the channel

configurations L =8, [ = 4, a; = 2 which are fixed, and
for five different values of a, =0,0.5,1,2 and 3. The

(b) @j

Fig. 2. Flow and temperature fields for a, = 1. Streamlines are

(b) Re = 380.

Iy

on the left side and isotherms are on the right side. (a) Re = 50.

Fig. 3. Velocity fields for a, = 1. (a) Re = 50. (b) Re = 380.
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Reynolds number is up to 500 and the Prandtl number
is 7.

4.1.1. Steady state

The streamlines (Y =const.) and isotherms
(T=const.) of the steady-state flow and temperature
fields for a, = 1 at Re = 50 and 380 are depicted in Fig.
2. The flow is from left to right. Hereafter, the contour
levels for flow field have been chosen to detail the re-
circulating region, but those for temperature field are
equal difference. The streamlines are shown on the left
side and the isotherms on the right side. In this case, the
upper plate is parallel and the lower one has the ex-
panded groove, so the channel is asymmetric.

A vortical flow motion can be seen at the upstream
side of the expanded groove for Re = 50 and the main
flow deflects into groove. The vortex grows larger and its
center moves to the downstream as the Reynolds num-
ber increases and occupies whole region of the groove
for Re =380. The main flow at Re = 380 is straight

4337

without deflecting and becomes parallel such as the
profile of a plane Poiseuille flow. Fig. 3 shows the ve-
locity profiles (U =const.) for Re = 50 and 380, where
the contour levels are equal difference. They also suggest
that the flow is close to core Poiseuille flow, with the
grooved region occupied with slow moving fluid, as the
Reynolds number increases. There are some previous
studies for this configuration as a, = 1, and qualitative
behavior such as the vortical flow motion and the for-
mation of the slow moving fluid region are the same as
them [3-5].

The corresponding isotherms for Re = 50 deflect into
the expanded groove. It is seen that diffusion is effective
in heat transportation into the groove, thus showing that
heat transportation extends throughout the whole area
of the groove when fluid flows along the groove. On the
other hand, as the Reynolds number increases, the iso-
therms do not get deflected into the groove because
convection rather than diffusion becomes effective as
shown in Fig. 2(b) for Re = 380, and heat transportation

-

(b)

fig

Fig. 4. Flow and temperature fields for a, = 2. Streamlines are on the left side and isotherms are on the right side. (a) Re = 50. (b)

Re = 260.
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Fig. 5. Flow and temperature fields for a, = 0. Streamlines are on the left side and isotherms are on the right side. (a) Re = 50.

(b) Re = 100.
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does not extend into the upstream side of the groove. It
is observed that the thermal boundary layer which de-
velops along the channel is interrupted and re-estab-
lished due to the existence of the groove.

The streamlines of the steady flow for a, =2 at
Re = 50 and 260 are shown on the left side in Fig. 4.
In this case, the channel has expanded grooves in both
the upper and lower plates, and it is symmetric with the
centerline. For the two Reynolds numbers studied, the
flow is symmetric with the centerline of the channel
without deflecting into one side, although it is pointed
out to become asymmetric depending on the channel
configurations by a pitchfork bifurcation [14]. The cor-
responding isotherms are presented on the right side in

(@

(b) = J

(d)
———
Y =)

Fig. 4. Our pictures shown here are similar to the results
in periodic wavy passages [15].

The streamlines of the steady flow for a, =0 at
Re = 50 and 100 are depicted on the left side in Fig. 5. In
this case, the upper plate has a contracted groove and
the lower has an expanded one, so the channel is
asymmetric. It is seen that the streamlines meander
along the channel configuration in Fig. 5(a) and the
main flow goes deeply in the grooves. The corresponding
isotherms are presented on the right side in Fig. 5. It is
seen that isotherms strikingly converge on the region
with the most narrow height #* compared with the other
cases because the upper plate is contracted and the main
flow is restricted almost the half region with height 4*.

Fig. 6. Flow and temperature fields during one oscillation cycle for a, = 1 at Re = 420 (Re. = 409). Streamlines are on the left side and
isotherms are on the right side. (a) t =1+ 0/6T;. (b) t =1+ 1/6Ty. (c) t =1y +2/6Ty. (d) t =1ty +3/6Ty. (e) t =1ty +4/6T,.

() t =ty + 5/6T.
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4.1.2. Oscillatory state

Adachi and Uchara [16] studied the instability and
transition of the steady-state flow together with the
pressure drop characteristics in the same channel con-
figurations as we consider in this paper, and showed that
the steady-state flow becomes unstable for Tollmien—
Schlichting wave modes and bifurcates to a time-peri-
odic, self-sustained oscillatory flow at a critical Reynolds
number Re, due to Hopf bifurcation. They obtained the
following relations with the critical Reynolds numbers
to the various geometric parameters a,.

Re. = 187a;' +222 for 1< a, <3. (13)

Re. = 123(a, + 1)'™ for 0<a, < 1. (14)

Here we show instantaneous streamlines and isotherms
of the self-sustained oscillatory flow with period 7; at
every one-sixth period arbitrarily from time # for
a, = 0,1 and 2 in Figs. 6-8, where the Reynolds num-
bers are slightly larger than the critical values. The
streamlines are depicted on the left side and the iso-
therms are on the right side. For @, = 0 and 2, the same
phenomena repeat for every half period inside the upper
and lower grooves alternately, so we show only the re-
sults for the half period and omit those for the other half
period.

The vortices in the grooves repeat the process that
they move to the downstream so as to press the wall of

@)

(@)

e

grooves, and simultaneously new vortices are born in
the upstream half of the groove as shown on the left
side in Figs. 6-8. For the corresponding isotherms on
the right side of the figures, there are significant wav-
iness and roll-up of the isotherms at the groove lip, so
the isotherms deflect deeply into the grooves, which are
typically observed for the case of a, = 2. Moreover, it
is observed that the thermal boundary layers are re-
established more intensively than the case for the
steady state. Especially, the isotherms are very thin at
the outer corner where the re-establishment of thermal
boundary layer starts because the secondary vortices
inside the grooves are pressed to the corner. Thus, it
can be seen that the self-sustained oscillatory motions
of the secondary vortices inside the grooves remarkably
contribute to the enhancement of heat transfer and
flow mixing.

4.2. Heat transfer and pressure drop

We consider the effect of contracted or expanded
grooves on the pressure. The pressure drop Ap is defined
as

(P —py)
AP:W:M—PO: (15)
where p; and p, are the cross-sectional averaged nondi-
mensional pressure at the inlet and outlet of the periodic

©%

(b)

|

(©) =

Fig. 7. Flow and temperature fields during half oscillation cycle for a, = 2 at Re = 300 (Re. = 289). Streamlines are on the left side
and isotherms are on the right side. (a) t =1 + 0/6T,. (b) t =t + 1/6Ty. (c) t = to + 2/6Ty.
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Fig. 8. Flow and temperature fields during half oscillation cycle for a, = 0 at Re = 130 (Re. = 123). Streamlines are on the left side
and isotherms are on the right side. (a) 1 =t + 0/6T;. (b) t =t + 1/6T. (c) t =t + 2/6Tp.

module, respectively. The time-averaged value is used
when the flow field is time periodic.

For practical applications, it is desirable to compare
the pressure drops with corresponding values Ap, for the
parallel plate channel whose height is 24* throughout in
this study. The ratios Ap/Ap, of the pressure drops are
provided against the Reynolds numbers in Fig. 9, where
Ap, = 2L/Re exactly derived from the Navier—Stokes
equation. The pressure drop ratios for @, = 1,2 and 3
are less than unity for Re < Re., while they increase
above unity for Re > Re.. It is consistent with the pre-
vious results of Ghadder et al. for the configuration as
@, =1 [3]. On the other hand, the pressure drop ratios
for a, =0 and 0.5 which have contracted grooves, are

10 T
Q? 0/6/90//0
SQ.4 Lr ;;ﬁg‘:w ]
<
au=0 —
a,=0.5 —o—
au_l .
au_2 —_—
=3 ——
0.1 .
10 100 1000

Fig. 9. The pressure drop ratios.

always larger than unity. Our paper [16] gives more in-
formation on the pressure drop.
Next we consider the effect of grooves on the heat
transfer. A local Nusselt number, Nu is defined as
o Dj

Nu = 7 (16)

where o is the heat transfer coefficient, A* the thermal
conductivity of the fluid and D; = 4h*, the hydraulic
diameter. A local heat flux ¢* is defined as

* * or* * (ke *
q =— (an) =o' (T) - T}), (17)

where (07*/0n*),, , is the temperature gradient normal to
the wall at the position s along the channel wall from the
inlet of the module including the lateral wall. By intro-
ducing Eq. (17) in Eq. (16), we obtain

p; (o
T\; - Tl; on* w,s
4 or
= — (= . 1
waTb(an)ws ( 8)

The time averaged value is used when the temperature
field is time periodic.

It is also desirable to compare the mean Nusselt
numbers Nu, integrated along the groove faces with
corresponding values for the parallel plate channel
Nuy, = 7.54[13]. The ratios Nuy, /Nu, of the mean Nusselt
numbers for both the upper and lower plates are pro-
vided against the Reynolds numbers in Fig. 10.

The ratios for @, = 0.5,1,2 and 3 are less than unity
for Re < Re., thus the heat transfer is reduced in

Nu =
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1000
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10 T
:ﬁ.
<
3 ]
=z

a,=3 ——

0.1 .

(b) 10 100 1000

Fig. 10. The Nusselt number ratios. (a) For the upper plate. (b) For the lower plate.

comparison with the parallel plate channel, where the
ratio for a, =1 in Fig. 10(a) is almost unity for
Re < Re., because the upper plate for a, =1 is the
same as the parallel plate. It is observed that the ratios
decrease in some cases just before the critical Reynolds
numbers. This is mainly because the effect of convec-
tion becomes intensive as the Reynolds number in-
creases, and the local Nusselt numbers decrease inside
the grooves. However, once the flow fields become
oscillatory state for Re > Re., the ratios increase
abruptly to overcome unity for a, =0.5,1,2 and 3. On
the other hand, the ratio for a, = 0 is always greater
than unity in spite of the flow state. We can conclude
that the heat transfer for periodically grooved channel
is enhanced highest possibly four times larger than
those for the parallel plate channel as the Reynolds
number is beyond its critical value, and other experi-
mental and numerical studies confirm these levels of
augmentation [7,9].

It has been found that the heat transfer is enhanced
when the self-sustained oscillatory flow occurs. In order
to study why the mean Nusselt numbers increase for the
oscillatory flow, the local Nusselt number ratios Nu/Nu,
evaluated along one side of the plates are presented for
a, =2 at Re =50, 260 and 300 in Fig. 11, where the
channel is symmetric with the centerline in this case, and
s is the distance from the inlet to outlet along the
channel wall including the lateral one. The flow and
temperature fields are in steady state for Re = 50 and
260, and in oscillatory state for Re = 300.

The local Nusselt number ratios for Re = 50 and
260 approach Nu/Nu, ~ 1 except the expanded groove.
They decrease sharply inside the groove (2 < s < 8), so
the mean values of Nu/Nu, are less than unity in spite
of the local maximum shown at the upstream and
downstream outer corners (vicinity of s = 2,8). On the
other hand, Nu/Nu, for Re = 300 shows very strikingly

Fig. 11. The local Nusselt number distributions for a, = 2.

large value at the downstream outer corner (vicinity of
s = 8) compared with the other two cases and the local
instantaneous Nusselt number always take larger value
to the other two steady cases, mainly because the
vortices inside the groove are promoted to the down-
stream so as to collect the isotherms. The larger value
is followed by a gradual decrease except the groove
toward the next one, so that the mean values of
Nu/Nu, become greater than unity although Nu/Nu,
decreases inside the groove temporarily. The mecha-
nism of heat transfer enhancement is summarized as
follows. When once the steady flow bifurcates to the
oscillatory one, the vortex inside the groove begins to
move downstream due to traveling Tollmien—Schlich-
ting wave generated in the main flow. Namely, a
translational velocity toward the downstream direction
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ay=uv —*— au_o e
@,=0.5 —— a,=0.5 ——
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Wirtz et al. Wirtz et al.
= 1F e = 1r b
0.1 . 0.1 L
(a) 100 1000 10000 (b) 100 1000 10000

Pe

Pe

Fig. 12. The efficiency between heat transfer and pressure drop. (a) For the upper plate. (b) For the lower plate.

is generated in the grooved part. Therefore, the iso-
therms are translated by the velocity into the down-
stream outer corner, so that the thermal boundary
layer becomes more thin leading to the larger heat flux
than the steady-state cases.

It is practically important to reveal the channel
configurations which show the efficient performance
between the heat transfer and pressure drop. We define
an efficiency 5 as the ratio of the heat transfer en-
hancement to the increase of pressure drop as

n— Nty [Nu,
AP/APP -

We show the efficiency # against the Peclet number
Pe = RePr in Fig. 12 for both the upper and lower plates,
to compare with the results of Wirtz et al. [9]. They
obtained experimentally the Colburn j-factors from the
mean Nusselt numbers based on the centerline tem-
perature for air flows for the channel having a series of
transverse V-grooves. In their study, expanded grooves
are symmetrically placed on both the channel walls and
each groove is right angled triangle with depth 2.4h*.
They tabulated the friction factor and Colburn j-factors.
Here we recalculate the mean Nusselt numbers for
Pr=0.7 and show # against Pe in Fig. 12.

In these figures, the region for # > 1 means that the
heat transfer enhancement exceeds the increase of
pressure drop, and the efficiency is superior to the
parallel plate channel. For the channels with contracted
grooves for a, <1, the heat transfer is enhanced
compared with the other configurations for both the
upper and lower plates, but the pressure drop is also
larger than the others. So, # is less than unity for al-
most extent of Pe considered here. For a, =1, 5 is
always over unity for the upper plate, while it is less
than unity for the lower plate until the onset of self-

(19)

sustained oscillations. Once the flow becomes oscilla-
tory state,  for a, = 1 becomes over unity. For a, =2
and 3, n is less than unity for the steady-state flow,
while increases over unity for the oscillatory one. It is
found that the regions for 5 > 1 are realized for rela-
tively small Pe in these cases.

In the case of Wirtz et al. [9], the critical Reynolds
number for the onset of the oscillatory flow is Re. = 177
and 5 for the oscillatory to turbulent flow regimes is
shown in Fig. 12. So, the heat transfer is thought to be
enhanced compared with the parallel plate channel be-
cause the flow becomes better mixed, but the pressure
drop increases over the heat transfer enhancement. This
is mainly expected to be due to the effect of the groove
shape instead of that of the Prandtl number, because the

10

0.1 L
100 1000 10000
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Fig. 13. The overall efficiency combining both upper and lower
plates.
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pressure drop characteristics are independent of the
Prandtl number.

Finally, we show the over all efficiency combining
both upper and lower plates in Fig. 13 in order to show
the efficient channel configuration. It is found that the
channels for a, =2 and 3 show efficient performance
over the parallel plane channel especially in the oscil-
latory flow state.

5. Conclusions

A numerical investigation has been performed for the
flow and temperature fields in channels with periodically
grooved parts along the streamwise direction as a simple
model of plate-type heat exchangers. Numerical simu-
lations of two-dimensional flow and temperature fields
have been performed using finite difference method for
the channel configurations L = 8, / = 4, @y = 2 which are
fixed, and for five different values of @, = 0,0.5,1,2 and
3. The Reynolds number range is 50 < Re < 500 and the
Prandtl number is being Pr = 7.

Numerical results have revealed that diffusion is ef-
fective in temperature field at relatively small Reynolds
numbers, while convection is effective as the Reynolds
numbers increase. Thus the local Nusselt numbers inside
the grooved parts are reduced in some cases as the
Reynolds number increases. Once, however, the flow
and temperature fields become oscillatory state, the
mean Nusselt numbers increase abruptly. It is mainly
because the vortices inside the grooves are promoted to
the downstream wall so as to collect the isotherms and
the re-establishment of the thermal boundary layer be-
comes intensive. The heat transfer is enhanced signifi-
cantly after the bifurcation from steady-state flow to
oscillatory one, but the pressure drop also increases. We
have discussed the efficiency between the heat transfer
enhancement and the increase of pressure drop for
various channel configurations. It has been found that
the channels with the expanded grooves show efficient
performance over the parallel plane channel especially
for the oscillatory flow state, while those with contracted
grooves are inefficient.
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